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A B S T R A C T

Do children understand how different numbers are related before they associate them with specific cardinalities?
We explored how children rely on two abstract relations – contrast and entailment – to reason about the meanings
of ‘unknown’ number words. Previous studies argue that, because children give variable amounts when asked to
give an unknown number, all unknown numbers begin with an existential meaning akin to some. In Experiment
1, we tested an alternative hypothesis, that because numbers belong to a scale of contrasting alternatives,
children assign them a meaning distinct from some. In the “Don’t Give-a-Number task”, children were shown
three kinds of fruit (apples, bananas, strawberries), and asked to not give either some or a number of one kind
(e.g. Give everything, but not [some/five] bananas). While children tended to give zero bananas when asked to not
give some, they gave positive amounts when asked to not give numbers. This suggests that contrast – plus
knowledge of a number’s membership in a count list – enables children to differentiate the meanings of unknown
number words from the meaning of some. Experiment 2 tested whether children’s interpretation of unknown
numbers is further constrained by understanding numerical entailment relations – that if someone, e.g. has three,
they thereby also have two, but if they do not have three, they also do not have four. On critical trials, children
saw two characters with different quantities of fish, two apart (e.g. 2 vs. 4), and were asked about the number in-
between – who either has or doesn’t have, e.g. three. Children picked the larger quantity for the affirmative, and
the smaller for the negative prompts even when all the numbers were unknown, suggesting that they understood
that, whatever three means, a larger quantity is more likely to contain that many, and a smaller quantity is more
likely not to. We conclude by discussing how contrast and entailment could help children scaffold the exact
meanings of unknown number words.

1. Introduction

As adults, we are able to think and talk about abstract concepts like
integer, atom, and density. We use these words to describe and explain our
perceptual experience of the world. To learn the meanings of such words,
however, it is not enough to observe the world through our senses and
associate percepts with labels – our eyes and ears are simply not
equipped to detect integers, atoms, or density. Moreover, no simple
concatenation of perceptual building blocks can supply the content of our
most abstract mental representations. Even in domains for which humans
have relatively robust perceptual systems – like time, space, and number
– these representations are profoundly limited and noisy, a fact which
likely motivated earlier generations of humans to create external sym-
bolic systems for describing and explaining the world (Barner, in press).
According to some accounts, this process of constructing abstract

symbolic systems, found in human history, is recapitulated in child de-
velopment, and involves a form of “bootstrapping”, wherein children
begin by building structures to describe phenomena that are available to
perception, and then leverage these new structures to construct re-
presentations that are ever more complex and divorced from perception
(Carey, 2009; MacNamara, 1972; Braine, 1992).

One prominent suggestion for such a mechanism is what Carey
(2009) calls Quinian bootstrapping, based on a metaphor first described
by Quine (1960):

“The child scrambles up an intellectual chimney, supporting himself
against each side by pressure against the others. Conceptualization on
any considerable scale is inseparable from language, and our ordinary
language of physical things is about as basic as language gets.”

(Quine, 1960, p. 93)
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On Carey's (2009) account, the walls of the Quinian chimney take
the form of so-called placeholder structures – words that children hear
used by adults in their input, but for which they don’t yet have
meanings. Learning these structures – e.g., how duration words like
second and minute are related, or how the number words are ordered –
restricts children’s inferences about the meanings of the individual
words contained within them (Tare, Shatz, & Gilbertson, 2008). For
example, to learn the meaning of a word like hour, children first learn
that hour belongs to a class of alternatives including second, minute, and
day, then learn how these words are ordered with respect to duration,
and then learn the precise relations that define them – e.g., that an hour
is 60min, which in turn can be defined as 60 s (Shatz, Tare, Nguyen, &
Young, 2010; Tillman & Barner, 2015). On this view, word learning –
and the process of conceptual development that accompanies it – is an
iterative process wherein learning words and their relations to one
another allows children to entertain increasingly sophisticated meaning
hypotheses, which are defined in terms of relations between symbols
and concepts themselves, rather than in terms of mappings to simple
perceptual phenomena (see Carey, 2009; Wagner, Tillman, & Barner,
2016; and Block, 1987 for a more general defense of inferential role
semantic theories).1

1.1. Natural number

In this paper, we investigate children’s understanding of the logical
relations between words in the count list, and whether learning such
relations might constrain the acquisition of individual number word
meanings. Although various case studies have been used to explore the
Quinian bootstrapping hypothesis (Carey, 2009), number word learning
provides an especially compelling area of inquiry for at least two rea-
sons. First, although humans have perceptual representations of objects
and number from the earliest moments of life (Feigenson, Dehaene, &
Spelke, 2004), these representations do not provide the content needed
to learn large exact natural numbers, like 10 or 452. Representations of
objects and approximate magnitudes lack the logical content that
number words must ultimately encode, such as exact equality, and the
successor function (i.e., that for every natural number, n, there is a
successor defined as n+1). These facts suggest that perception of
magnitudes alone cannot provide the meanings of number words (for
review, see Barner, 2017, in press; Laurence & Margolis, 2005), and
that the counting structure itself plays a role in their construction.

A second reason that number words provide a compelling test of
Quinian bootstrapping is that by around the age of 2, children in the US
learn a partial count list – up to 5 or 10 – before they have learned the
meanings of any of these words, much like they learn to recite letters of
the alphabet (Fuson, 1988; Gelman & Gallistel, 1978). Thus, children
construct a placeholder structure as a first step in the learning process.
At roughly six month intervals thereafter, children learn the meanings
of one, two, and three, one at a time, and always in that sequence (see Le
Corre, Brannon, Van de Walle, and Carey, 2006; Wynn, 1990, 1992).
Children at these different stages are collectively known as “subset-
knowers”, because they know the meanings of only a subset of the
numbers in their count list. Thus, up until this point, children’s
knowledge of counting structures outstrips their knowledge of what
these structures mean, and what cardinalities the individual number
words denote – a precondition for the use of these structures in a

bootstrapping process. At around the age of 3½ to 4 years, US children
appear to realize that the counting routine can be used to label and
generate sets (Carey, 2004, 2009; Sarnecka & Carey, 2008; Schaeffer,
Eggleston, & Scott, 1974). At this stage, children are known as Cardinal
Principle knowers (or CP-knowers), because they can use counting to
construct sets for all numbers in their count list (e.g., counting and
giving eight objects upon request). Finally, around two years later, US
children appear to discover why counting works in this way and, in
particular, how numbers are related via the successor principle. When
told the cardinality of a set – e.g., I have five frogs – children around 5½
years old are able to predict how many frogs will result if one more is
added to the set, and know that this function can be applied in-
definitely, resulting in a potential infinity of natural numbers (Cheung,
Rubenson, & Barner, 2017; Davidson, Eng, & Barner, 2012; Evans,
1983; Gelman, 1980; Hartnett, 1991; Hartnett & Gelman, 1998;
Spaepen, Gunderson, Gibson, Goldin-Meadow, & Levine, 2018). This
series of stage-like transitions, also found in various other cultures
(Almoammer et al., 2013; Barner, Libenson, Cheung, and Takasaki,
2009; Le Corre, Li, Huang, Jia, & Carey, 2016; Piantadosi, Jara-Ettinger,
& Gibson, 2014; Sarnecka, Kamenskaya, Yamana, Ogura, & Yudovina,
2007). This suggests that children’s learning of larger number words
begins with a placeholder structure that is gradually filled in with dif-
ferent components of meaning, allowing children to ascend a con-
ceptual chimney as each new brick is laid.

Given that children do not understand counting early in develop-
ment and take years to understand its precise logic, how could the
structure of counting play a role in learning individual number word
meanings? One clue comes from a study by Wynn (1992), who asked
whether, as in other cases of word learning, children expect number
words to respect Clark’s “Principle of Contrast” – i.e., that a new word is
likely to have a different meaning than words they already know (Clark,
1987; Carey & Bartlett, 1978; Golinkoff, Mervis, & Hirsh-Pasek, 1994;
Markman, 1990; Woodward & Markman, 1998). In her study, Wynn
(1992) showed that when 1-knowers are presented with a choice be-
tween two sets – e.g., 1 balloon vs. 5 balloons – they select the larger set
when asked to point to five balloons, despite not yet knowing the
meaning of five. This suggests that children used their prior knowledge
of one to restrict their interpretation of five by assuming that the two
numbers could not denote the same quantity. Critically, however,
children did not assume that known number words (e.g., one in this
example) contrast with just any other word: When shown the same
comparison of 1 vs. 5 and asked to point to blick balloons, children
pointed randomly, suggesting that they contrasted one and five, but not
one and blick (Wynn, 1992; see also Barner & Bachrach, 2010; Clark,
1987, 1988).

While Wynn’s study shows that children assume that number word
meanings contrast, it leaves open what they think these contrasting
meanings might be. On one account, proposed by Sarnecka and Gelman
(2004), subset knowers assume that members of the count list denote
precise cardinalities, each of which contrasts with the others, but
simply don’t know which numbers denote which cardinalities. In sup-
port of this claim, Sarnecka and Gelman presented subset knowers with
a set transformation study, in which a quantity beyond their knower
level (e.g., five frogs) was placed in a container and labeled (e.g., Here
are five frogs). The hidden set was then modified by adding an addi-
tional object, and children were asked whether there were now five (the
original number) or six (a novel number). Sarnecka and Gelman found
that when the set was changed children preferred the novel number,
consistent with the belief that changes in cardinality require changes in
number words. Other studies, however, suggest that children’s perfor-
mance on this task may not reflect knowledge of number, but instead an
assumption that contrast applies whenever some significant transfor-
mation of a referent takes place (for discussion, see Brooks, Audet, &
Barner, 2013; Condry & Spelke, 2008; Izard, Streri, & Spelke, 2014;
Sarnecka & Wright, 2013). For example, Brooks et al. (2013) found an
identical pattern of results when children were shown similar physical

1 A closely related process has been proposed within Bayesian learning fra-
meworks. In these frameworks, the iterative interplay between specific hy-
potheses about a given concept (e.g. the meaning of day) and more abstract
overhypotheses about the relation between concepts (e.g. the relation between
measurement units of time) constrains both kinds of hypotheses, and enables
the learning of more complex conceptual structures than would otherwise be
possible (see Dewar & Xu, 2010; Goodman, Ullman, & Tenenbaum, 2011;
Kemp, Perfors, & Tenenbaum, 2007; Tenenbaum, Griffiths, Kemp, and
Goodman, 2011).
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manipulations, but using novel nouns like blicket, rather than number
words. This result, and others that avoid presenting children with
contrasting labels to describe transformed sets, suggest that Sarnecka
and Gelman’s task may reflect a general sensitivity to contrast in la-
beling, rather than to the semantics of number words, while leaving
open the possibility that other tasks may detect more specific semantic
knowledge (Condry & Spelke, 2008; see also the two set tasks of
Sarnecka & Gelman, 2004, and Sarnecka & Wright, 2013; see also
McGarrigle & Donaldson, 1974, for a similar pragmatic explanation of
Piagetian conservation failures).

In contrast to Sarnecka and Gelman (2004), others have argued that
children initially assign number words more general, set relational
meanings, like other quantity expressions in natural language (Barner,
Chow, & Yang, 2009; Bloom & Wynn, 1997; Carey, 2004, 2009; Clark,
1970; Clark & Nikitina, 2009). For example, in his discussion of how
children learn quantifiers like more and less, Clark (1970) argued that
children initially assume that all quantity expressions have a type of
existential meaning, like the word some. According to Clark,

In the first stage, more and less both mean “a quantity of” or “some.”
A question people might commonly ask a child is “Do you want
more food?”… He would encounter less also as “some” since it oc-
curs as a single “adjective” modifying food. The senses of “quantity
of” and “some,” of course, are equivalent to the nominal use of much

(Clark, 1970, p. 272)

Similarly, Carey (2004) and Clark and Nikitina (2009) have both
argued that children interpret number words beyond their knowledge
like the plural existential some, e.g., using the word two whenever more
than one object is present (though see Barner, Lui, & Zapf, 2012). On
this type of account, children make minimal assumptions regarding the
meanings of quantity expressions, and do not initially use their
knowledge of the count list to differentiate them from other quantity
expressions in natural language.

A problem with adjudicating between these different theories of
number word learning is that, like the controversial set transformation
task of Sarnecka and Gelman, most existing methods fail, in a principled
way, to generate diagnostic patterns of data. For example, all theories
make the same prediction regarding Wynn’s Give-a-Number task:
Whether children believe that five denotes a cardinality or they believe
that it has an existential meaning like some, a 1-knower should give any
random amount greater than one when asked to give five. Similarly, all
theories make the same prediction regarding Wynn’s “Point to N” task.
When a 1-knower is shown a comparison of 1 object vs. 5 objects and
asked to point to the set with five, they should point to the larger set on
the basis of contrast alone, whether they believe that five denotes a
specific cardinality or has an existential meaning. Other tasks used in
the literature, e.g., that ask children to label or count sets, encounter
similar limitations. In general, any specific cardinality like five, seven,
or seventeen can be described by either a number word or an existential
quantifier like some.

In the present study, we sought to circumvent this problem by
creating two new tasks. First, Experiment 1 addressed the limits of the
Give-a-Number task by creating what we call the “Don’t Give-a-
Number” Task. Our creation of this task was driven by the following
observation: While five and some can refer to the same set of five ob-
jects, these words behave differently in sentences involving negation.
For example, consider the sentences in (1) and (2):

(1) Give Cookie Monster something to eat, but don’t give him some of
the cookies.

(2) Give Cookie Monster something to eat, but don’t give him five of
the cookies.

Whereas the sentence in (1) favors a reading in which Cookie
Monster should receive no cookies, the sentence in (2) favors giving
some amount of cookies, but not exactly five. For adults, other readings

are also possible, but as we report, these do not generally arise for
children (see also Musolino & Lidz, 2006; Viau, Lidz, & Musolino,
2010).2 At least for adults, although some and five might refer to the
same quantity of objects, their respective negations do not. However, if
young children assign the unknown number five the same meaning as
the existential some, they should interpret not five just the same as not
some – as meaning none. If, on the other hand, children treat the count
list as a set of alternatives and use it to constrain their interpretation of
unknown numbers – consistent with Quinian bootstrapping – then they
may reason that an amount described as “not five” is compatible with
other, alternative, number words like six, seven, eight, etc.

1.2. Number and entailment

Children might use the structure of the count list to infer that each
number picks out a different quantity, consistent with Quinian boot-
strapping. However, it is also possible that the count list plays a still
stronger role in learning. Unlike many other classes of words, like those
that label colors or animals, the count list is an ordered scale of alter-
natives: Numbers later in the count list denote greater quantities, and
quantities are related to each other by set inclusion, such that larger
sets contain all smaller ones. Adults are clearly sensitive to this fact. For
example, if I know that I have three quarters in my pocket and I need
two for the parking meter, I do not need to count again to see whether I
have two. I know that if I have three I must also have two, because
having three entails having two. However, there is no entailment rela-
tion in the opposite direction, from small numbers to greater amounts:
Having three does not entail having four. Furthermore, negation re-
verses this entailment pattern. If I need three quarters for the meter and
do not have three, I thereby also know that I do not have four, or five,
although I might have one or two. These kinds of “asymmetric” en-
tailment relations hold in many domains – from quantification (if every
X is Y, then some X is Y) to adjectival modification (if something is very
nice, it is also nice), to natural kinds (if something is a dog, it is also an
animal), among many others. Entailment relations are found in all
languages and are a hallmark of the structure of the human conceptual
system (see Horn, 1972).

In the following two experiments, we explore children’s under-
standing of the abstract logical relations that hold between numbers –
an understanding that might serve as input into a process of Quinian
bootstrapping. In Experiment 1, we test whether children interpret
unknown number words differently than other quantifiers. Specifically,
we test whether children’s knowledge that number words contrast with
one another leads them to interpret numbers distinctly from other
quantifiers, and to associate them with different physical quantities:
Whereas not giving five leaves open many alternative numbers, not giving
some does not. In Experiment 2, we test whether children understand
the entailment relations expressed by number words. Do they know that
if a set has a given number, N, then there may actually be more than N
items in it, but not less than N? And by extension, do they know that not
having N entails that there are fewer than N items? Importantly, this
knowledge does not depend on knowing the meaning of any individual
number. Therefore, Experiment 2 further asks whether children might
have such knowledge even when they do not yet know the meaning of
N, and thus whether knowledge of entailment relations might precede
knowledge of cardinal meanings in acquisition.

2 Adults might compute a scalar implicature, interpreting some as some-but-
not-all, in which case giving all objects is a legitimate response. They might also
interpret negation with inverse scope, such that there is a set of objects that
should not be given. In contrast, young children rarely if ever compute spon-
taneous scalar implicatures over quantifiers (Noveck, 2001; Papafragou &
Musolino, 2003) or inverse scope (Musolino & Lidz, 2006; Viau et al., 2010).
Consistent with this, children’s behavior in Experiment 1 suggests they neither
computed implicatures nor inverse scope (they did not tend to leave the re-
quested amount, see Fig. A2).
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2. Experiment 1

We tested children’s interpretation of both known and unknown
numbers using the “Don’t Give-a-Number” task. Although it is unclear
when English-speaking children begin to understand don’t, recent work
shows that they comprehend the words no, not, and didn’t as markers of
logical negation shortly after they turn two (Austin, Theakston, Lieven,
& Tomasello, 2014; Feiman, Mody, Sanborn, & Carey, 2017; Reuter,
Feiman, & Snedeker, 2018). Children at this age are typically non-
knowers or 1-knowers, with many numbers still left to learn. We
therefore took age two as a starting point and aimed for a sample in-
cluding all knower levels for children up to age four, when most chil-
dren are CP-knowers, in order to test how children will interpret un-
known number words in combination with negation.

Children were presented with three sets of objects – strawberries,
bananas, and oranges – to feed a hungry puppet. They were then told to
give the puppet everything, “but don’t give him X”, where X was some
amount (five bananas, some of the bananas, etc.). This task allowed us to
determine whether children initially interpret number words like the
existential quantifier some (or the plural marker –s), or if they instead
use their status as contrasting alternatives to ascribe them different
meanings, and associate them with different physical quantities
(Sarnecka et al., 2007). These two possibilities clearly dissociate under
negation: When asked not to give three, a child who believes three is an
existential should give nothing (not some= none), whereas a child who
believes that all numbers contrast in quantity should interpret the re-
quest relative to other alternative requests that might have been made,
but were not (since not giving three, whatever that means, leaves open
the possibility of giving one, two, four, or five, etc.).

2.1. Method

2.1.1. Participants
We tested 90 English-speaking children with the goal of testing at

least 15 children per knower-level (an additional 32 failed to complete
at least one trial for every word).3 Because a child’s knower level group
could not be known before testing them, and we did not discard data,
this resulted in more children in some groups than in others. We ex-
cluded children who gave the same response on more than half of the
trials. Seventeen children were excluded on this criterion (8 non-
knowers, M age: 2;9, 3 1-knowers, M age: 3;4, two 2-knowers, M age:
3;0, two 3-knowers, M age: 3;1, one 4-knower, age: 3;0, and one CP-
knower, age 3;8).4 The remaining 73 children were aged 2;4 to 4;1
(M=3;4). Of these, 13 were identified by Wynn (1990) “Give-a-
Number” task as non-knowers (M=2;10, 2;4–3;3; 8 male). There were
39 subset-knowers, including 10 1-knowers (M=3;0, 2;6–3;8, 4 boys),
16 2-knowers (M=3;2, 2;11–3;8, 5 boys), 11 3-knowers (M=3;6,
3;1–3;9, 3 boys), 2 4-knowers (both 3;10, both girls). Finally, there
were 21 CP-knowers (M=3;6, 2;11–4;1; 4 male). Children were either
recruited by phone and brought into the lab or were recruited and
tested at daycares and museums in the San Diego area. All children
received a token gift for participating.

2.1.2. Materials and procedure
The experimenter first administered Wynn (1990) “Give-a-Number”

task to determine the child’s knower-level. Then, they introduced the
child to a puppet named Farmer Brown. The experimenter began by
placing a paper plate, five plastic bananas, five plastic strawberries, and

five plastic oranges in front of the child. Children who could not
identify the names of the fruits were familiarized with their labels. To
ensure that the child could identify each fruit and complete the task, the
experimenter requested that the child put each type of fruit onto the
plate, one at a time. If the child failed to do so, the experimenter pro-
vided feedback and asked the child to try again. If the child failed once
more, the task was discontinued.

On each trial, children were told that the puppet was hungry and
were then given a prompt. To ensure that behavior did not depend on
the exact wording of the prompt, children were randomly assigned to
one of two prompts, told either, Give Farmer Brown everything, but don’t
give him [1 banana], or, Farmer Brown likes bananas and strawberries and
oranges, but don’t give him [1 banana]. There were 12 trials in total, two
for each number (one, two, five) and quantifier (a, some, all). The trials
were presented in two quasi-random orders, counterbalanced across
participants. No quantifier or number was ever presented twice in a
row, and the types of fruit targeted were evenly distributed across trials.

2.2. Results and discussion

Raw data and statistical code are available at https://osf.io/ht6wd/.
Because we had no predictions that were specific to particular knower
levels, but only regarding unknown vs. known numbers, the analyses
reported below group all subset-knowers together. CP-knowers were
separated from subset-knowers, since no numbers were unknown to
them. For the interested reader, we report breakdowns by knower-level
within the subset-knower group in footnotes, with figures in Appendix
A.

In order to explore whether children assign number words an ex-
istential reading, we compared their proportion of “zero” responses
across request types. If children differentiate some and a from number
words, they should give zero more often when asked not to give either
some or a than when asked not to give a number. We further explore
whether children differ along this dimension depending on whether
they have assigned an exact meaning to all numbers (CP-knowers),
some subset of numbers (subset-knowers), or have not yet learned any
exact number meanings (non-knowers). We built a mixed effects lo-
gistic regression (R version 3.5.1 (2018–07–02); lme4 1.1.18.1), with
Giving Zero as a binary dependent variable, and two categorical fixed
effects: Number Knowledge (non-knowers, subset-knowers, and CP-
knowers), and Existential, (whether the prompt was existential - some or
a – or a number – one, two, or five) along with a random intercept and
slope of the Existential variable by subjects, and a random intercept by
items.5 This analysis found a highly significant effect of Existential
( 2= 53.78, p < 0.001), and a significant interaction of Number
Knowledge by Existential ( 2= 8.32, p=0.016).6,7 Unpacking this

3 Of these, 5 children did not finish the Give-N task and could not be classified
by knower-level. Of the remainder, there were 14 non-knowers (M age: 2;10),
four 1-knowers (M age: 3;0), four 2-knowers (M age: 3;1), one 3-knower (age:
3;7), and four CP-knowers (M age: 3;6).

4 Ten children gave all of each type of fruit on more than half the trials. Seven
gave exactly one of each type of fruit on more than half the trials.

5 The random effects specification followed the guidelines of Matuschek et al.
(2017). P-values for all models were derived by a Wald Type II Chi-square test,
comparing a model including the factor to a minimally different model ex-
cluding it.

6 Children received all questions in one of two prompt frames: either, Give
Farmer Brown everything, but don’t give him [1 banana], or Farmer Brown likes
bananas and strawberries and oranges, but don’t give him [1 banana]). The effect of
the Existential variable was significant following either prompt (1st: 2 =
32.92, p<0.001; 2nd: 2 = 61.61, p<0.001). A separate regression with
Existential, Prompt, and their interaction as fixed effects found main effects
both of Existential ( 2 = 55.64, p<0.001), and of Prompt ( 2 = 12.27,
p<0.001), and a marginal interaction ( 2 = 2.95, p = 0.086). There was also
a difference in the number of excluded children between prompts (15 kids
excluded for the first, 29 for the second; exact Chi-square test: 2 = 6.52, p =
0.011). Thus, while the first prompt was generally easier for children to un-
derstand across the different quantifier requests, children differentiated ex-
istentials from non-existentials given either prompt.

7 Overall, there was a high rate of exclusion in this task (38% summing over
both exclusion criteria), reflecting its difficulty. However, the omnibus sig-
nificant effect of the Existential variable on the rate of zero-giving remains even
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interaction by levels of Number Knowledge to look at the effect of
Existential within the non-, subset-, and CP-knowers separately, each
group was individually more likely to give zero for the existential forms
a and some than for the numbers (Fig. 1; non-knowers: 2= 6.28,
p=0.012; subset-knowers: 2= 40.58, p < 0.001; CP-knowers:
2= 14.86, p < 0.001.8 Thus, all groups of children clearly differ-

entiated number words from existential quantifiers, in keeping with the
hypothesis that membership in a scale of contrasting alternatives – i.e.,
the count list – affects their interpretation.

We next probed whether this finding was true of unknown numbers
in particular. While we found that even non-knowers, who know no
number words, differentiate numbers from some and a, we sought a
stronger test by specifically asking whether subset knowers treated
known and unknown numbers differently. We modeled the effect of
Prompt Knowledge (whether the mentioned number N was above the
child’s knower level or instead at-or-below it) within each group of
subset knowers separately (1–2-, and 3-knowers). Within each of these
three groups, there was no significant difference in the rate of zero-
giving between known and unknown numbers (all ps > 0.19), al-
though there was a difference between unknown numbers and the ex-
istentials a and some (see Fig. 1) suggesting that children treated un-
known numbers the same as known numbers and differently from
existentials, giving zero less often when asked not to give a number
than when asked not to give some, whether the number was known or
unknown.

Also, as Fig. 1 shows, the quantifier all patterned with the numbers:
Children rarely gave zero objects when asked not to give all. All served
as a control to check that children did not simply give zero objects to
any non-numeric quantifier prompt, but gave none selectively, only
when asked for not a or not some. In a model including Number
Knowledge (non-knowers, subset-knowers, CP-knowers) and Quantifier
(all vs. the existentials some and a grouped together), children gave zero
significantly more often when asked not to give an existential, than
when asked not to give all ( 2= 8.37, p=0.004), with no main effect
of Number Knowledge ( 2= 1.55, p=0.462), but a significant inter-
action ( 2= 6.04, p=0.049), reflecting non-knowers’ weaker differ-
entiation between prompts. Critically, children's differentiating ex-
istentials from all is not due to their failing to comprehend all: Although
all resembles unknown numbers on the Don’t Give-a-Number task, these
expressions differ on the standard Give-a-Number methodology. When
children 2 years of age and older are asked to give an unknown number,
they give a random amount, whereas they generally give all objects in
response to requests for all (Barner et al., 2009).

To summarize, children at all knower-levels interpreted numbers
differently from existential forms like a and some, whether these
numbers were known or unknown. Thus, contrary to some previous
proposals (Carey, 2009; Clark, 1970; Clark & Nikitina, 2009), children
do not begin with the assumption that number words are interpreted
like existential quantifiers. Instead, our data are compatible with the
idea that 2- and 3-year-olds treat number words as members of a class
of contrasting alternatives, such that not giving two leaves open alter-
native responses like giving three or giving one. While this result does not
speak to whether children initially assume number words denote either
exact or unique cardinalities (Sarnecka & Gelman, 2004), it does sug-
gest that children use the structure of the count list to constrain their
interpretation of unknown number words, compatible with Quinian
bootstrapping. In Experiment 2, we developed a method that allowed us
to further explore this idea, to test whether children not only believe
that numbers belong to a class of contrasting alternatives, but also that
these alternatives are logically structured, with each number referring
to a set that contains all smaller amounts, and no larger ones.

3. Experiment 2

To investigate children’s understanding of numerical entailment, we
modified Wynn’s Point-To-X task, in which children are asked to match
a statement – who has X – to one of two pictures. To do this, we created
a number of different types of affirmative and negative critical trials,
described below. Table 1 summarizes these trial types, with the content
of the trial depending on each child’s highest known number, N.

The first experimental trial type tested whether children assume
that unknown numbers contrast with known numbers, and therefore
sought to replicate Wynn (1992). On these contrast trials children were
shown two quantities and asked about a number above their knower
level, which corresponded to one of the sets. Note that children could

Fig. 1. Proportion of trials on which participants gave 0 of the target items in
response to each type of request. Error bars show±1 standard error, averaged
by participant.

(footnote continued)
when all children are included ( 2 = 65.10, p<0.001), with a significant
interaction by Number Knowledge ( 2 = 19.11, p<0.001). The effect of
Existential was separately significant in separate models of CP-and subset-
knowers, and marginal for the non-knowers (non-knowers: 2 = 2.95, p =
0.086; subset-knowers: 2 = 45.52, p<0.001; CP-knowers: 2 = 19.84,
p<0.001).

8 Within the subset-knowers, the same effect separately held at each knower-
level: 1-knowers: 2 = 9.30, p = 0.002; 2-knowers: 2 = 19.01, p<0.001; 3-
knowers: 2 = 12.76, p<0.001). The two 4-knowers were not analyzed as a
separate group.
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solve this task using only the principle of contrast, as long as they knew
the label of the smaller set. For example, a 2-knower presented with 2
vs. 4 (see Fig. 2), and asked who has four, might reason that the speaker
intended to indicate the larger set, since otherwise they would have
asked who has two (Condry & Spelke, 2008; Wynn, 1992). On other
trials, we asked children who does not have four. This question is harder,
because it requires the same reasoning to determine that four refers to
the larger set, and then an additional step to figure out that not four
refers back to the smaller set of 2. This task may not be easy for 2- and
3-year-olds who have only recently learned the meaning of not (Feiman
et al., 2017).

To investigate children’s understanding of entailment, we in-
troduced split trials, in which children also saw two sets, but now were
asked about a number in between, corresponding to neither set. For
example, a child presented with 2 vs. 4 was asked who has three (or who

does not have three). Since both sets were incompatible with the men-
tioned number, relying on contrast alone could not determine the
correct choice, since both two and four contrast with three.
Understanding the asymmetric entailment of number, on the other
hand, could guide a child’s choice. If I have four quarters, my friend has
two, and you need to borrow three quarters for the parking meter, the
correct answer to the question, who has three, is me and not my friend.
Similarly, the correct answer to the question, who does not have three, is
my friend and not me. More generally, given a larger set and a smaller
set and asked who has an unknown number, asymmetric entailment
guarantees that the larger set is always the better choice, since the
larger set will always contain the smaller one. If asked who does not
have an unknown number, asymmetric entailment reverses under ne-
gation, and similarly guarantees that the smaller set is the better choice.
Understanding entailment – and that numbers respect it – would thus
predict choosing the larger set on affirmative trials. Understanding how
negation reverses entailment would further predict choosing the
smaller set on negative trials. If children differentiate between affir-
matives and negatives, it would also rule out a simple response bias to
always choose either the smaller or the larger set for all prompts.

Critically, to exhibit knowledge of asymmetric entailment, children
do not need to know the exact meanings of any of the numbers involved
– neither the mentioned number, nor the numbers corresponding to the
displayed sets. Nevertheless, this does not guarantee that they’ll assume
that all numbers exhibit asymmetric entailment: It’s possible that
children assume that entailment relations hold only between numbers
they know, and make no assumptions about unknown numbers.
However, it is also possible that they assume that entailment relations
hold among all members of the count list, known or unknown. To ex-
plore this, we presented children with three different subtypes of split
trials. These trials varied in how many of the numbers involved were
unknown and were above a child’s knower level, N. In the first subtype
(N−1 vs. N+ 1 trials), the smaller of the two quantities (N−1) was
within their knower level, as was the number word (N) they were asked
about, while the higher quantity matched an unknown number (N+1).
For example, a 2-knower would see 1 vs. 3 fish, and be asked to find
who has two. In the second subtype (N vs. N+ 2), only the smaller
quantity corresponded to a known number. A 2-knower would see 2 vs.
4 fish, and be asked who has three. Finally, in the third subtype (N+1

Table 1
Trial types and subtypes in Experiment 2. For subset-knowers, N is the largest number the child knows. For CP-knowers and adults, N=5. With one exception, there
were two trials of every type (see note c below). Sample displays show examples of the pictures and corresponding prompt for the first subtype of trial within each
type (Control, Contrast, and Split), based on what a 3-knower would see.

Choices Prompt Correcta Sample display Sample prompt

Control trialsb

N vs. N+1 N smaller Can you find the one with three fish?
N−1 vs. N N-1 smallerc

not(N-1) larger
N+1 vs. N+2 N+2 larger

N+1 smaller

Contrast
N vs. N+1 N+1 larger Can you find the one with four fish?

not(N+1) smaller
N vs. N+2 N+2 larger

not(N+2) smaller

Split
N−1 vs. N+1 N larger Can you find the one with three fish?

not(N) smaller
N vs. N+2 N+1 larger

not(N+1) smaller
N+1 vs. N+3 N+2 larger

not(N+2) smaller

a Responses were coded in terms of whether the participant chose the larger quantity or the smaller quantity.
b 1-knowers did not receive any control trials with N−1 (which would be zero) as a probe.
c There were four trials of this stimulus type. There were two trials for each of the other stimulus types.

Fig. 2. A representative stimulus array from Exp. 2. The subject was told,
“Look! My friend has X fish. Can you find the one with X fish?” (positive
prompt) or, “Look! My friend does not have X fish. Can you find the one that
does not have X fish?” (negative prompt).
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vs. N+ 3), all numbers were beyond children’s knower level. For a 2-
knower, this would be a trial with 3 vs. 5 fish, and they would be asked
who has four. We reasoned that if children assume that entailment re-
lations hold among all members of the count list, they should choose
the larger set on affirmative trials and the smaller set on negative trials
across all cases. However, if they assume that entailment relations only
hold among known numbers, they should only succeed when some of
the numbers are known.

3.1. Method

3.1.1. Participants
We tested 133 English-speaking children, ages 2;8–5;0 (M=3;8, 69

boys) with the goal of testing approximately 20 participants at each
knower-level. The Give-a-Number task identified 72 subset-knowers: 23
1-knowers (2;9–4;4, M=3;4, 11 boys), 28 2-knowers (2;8–4;4,
M=3;3, 13 boys), 21 3-knowers (2;9–4;5, M=3;5, 10 boys), 7 4-
knowers (2;0–4;3, M=3;5, 2 boys), and 54 CP-knowers (2;9–5;0,
M=4;2, 33 boys). An additional 18 children were excluded for com-
pleting fewer than half the trials (7: two 1-knowers, one 3-knower, and
four CP-knowers), experimenter error (2), or inability to assign knower-
level (9). Children were tested in the lab or at daycares in San Diego,
CA, and Comox, British Columbia. Twenty-one adults (18–23, M=21,
3 men) participated in exchange for course credit.

3.1.2. Materials and procedure
To begin, we assessed each child’s knower-level using Wynn's

(1990) Give-a-Number task. All participants then completed a forced-
choice task based on Wynn's (1992) Point-To-X task, in which they were
asked to identify which of two animals has a specific quantity of fish
(see Fig. 2). A full list of trials is presented in Table 1. Participants were
randomly assigned to one of two quasi-random trial orders. In both
orders, the number of fish depicted in the two images was counter-
balanced across trials. Also, half of the trials of each type appeared in
the first half of the experiment and half appeared in the second half of
the experiment.

There were three trial types (Table 1). Control trials validated which
numbers were known and unknown. Some tested the child’s knowledge
of known numbers – e.g., 2-knowers were asked to find the animal who
has two fish, given a display in which only one animal had exactly two
and the other had exactly one. Other control trials, replicating Wynn
(1992), tested whether ‘unknown’ numbers were actually unknown –
e.g. 2-knowers were shown an animal with three fish and an animal
with four fish, and were asked either who has three, or who has four.
Following Wynn, we expected 2-knowers to choose randomly between
the sets.

Contrast trials presented children with pictures of two quantities,
and queried them on a number word corresponding to one of the
quantities, but above their knower level. There were three subtypes of
contrast trials. One showed sets of N vs. N+ 1 and queried on N+1 or
not N+1; another showed sets of N vs. N+2 and queried on N+2 or
not N+2. For example, on a N vs. N+2 contrast trial, 2-knowers were
shown an image like the one in Fig. 2 and were asked to find the animal
who has four fish (or, alternatively, the animal who does not have four
fish).

Split trials presented children with two non-consecutive quantities
and queried them about an intermediate number word. There were
three subtypes of split trials. One showed sets of N−1 vs. N+1 and
queried on N or not N; another showed sets of N vs. N+2 and queried
on N+1 or not N+1; and finally, one showed two unknown numbers,
N+1 and N+3, and queried children on N+2 or not N+2. For
example, on a N+1 vs. N+3 trial, 1-knowers were shown an image
like the one in Fig. 2, with two and four fish, and were asked to find the
animal who did (or did not) have three fish.

3.2. Results

As in Experiment 1, we grouped different subset-knowers together
for the analyses below. Note that in Experiment 2 the content of trials
was yoked to each child’s knower level, so children at different levels
were tested with different stimuli (e.g., different number words and
different set sizes), making comparison across levels less interpretable.
Nevertheless, for interested readers we again include an exploratory
breakdown of performance by knower level in footnotes, with figures in
Appendix B. For both subset- and CP-knowers, we proceed with sepa-
rate analyses of the three trial types and their subtypes.

Control Trials. We first analyzed those control trials in which the
queried quantities were known (i.e., trials in which participants saw
either N vs. N+1 and were asked who has N, and those where they saw
N−1 vs. N and were asked both who has and who does not have N − 1).
Collapsing across these three trial types, we built separate mixed effects
logistic regression models for subset- and CP-knowers with random
intercepts for subject and items.9 These revealed that all subject groups
correctly answered these control trials at above-chance rates, con-
firming that they understood the task (Subset-knowers: M=81.57%,
Z=3.28, p=0.001; CP-knowers: M=71.91%, Z=5.43, p < 0.001;
adults: M=100%). We separately analyzed the control trials that asked
children about unknown quantities, presenting them with N+1 vs.
N+ 2 and asking either who has N+1 or who has N+2. Fig. 3 shows
the results of these unknown control trials. While Wynn (1992) found
chance performance on these trials, she collapsed performance on
queries asking for N+1 and those asking for N+2. We analyzed the
two queries separately and found that participants were more likely to
choose the animal with N+2 when asked for the animal who has
N+2 than the animal who has N+1 (Subset-knowers: 2= 13.09,
p < 0.001; CP-knowers: 2= 5.40, p=0.020). In particular, while
both Subset- and CP-knowers chose randomly when asked who has
N+1, Subset- (but not CP-knowers) chose N+2 when asked who has

Fig. 3. Participants’ responses on control trials querying unknown numbers
(children are shown N+1 vs N+2 and queried on either N+1 or N+2). The
y-axis indicates the percent choosing the larger set (i.e. N+ 2). For subset-
knowers, N is the largest known number. For CP-knowers and adults, N= 5.
Error bars show 1 standard error from the mean.

9 Omnibus analyses across trial types are both less theoretically relevant and
not statistically appropriate. In order to keep the task at a manageable length
for two-year-olds, we eliminated some trials from the full crossing that were not
informative.
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N+2 (Z=3.74, p < 0.001). We return to this discrepancy in the
discussion. 10

Contrast Trials. These trials were coded in terms of whether the
subject chose the animal with the larger quantity of fish (Fig. 4). This
was the correct answer for half of the trials, whereas for the other half,
the correct answer was the smaller quantity (Table 1). Of key interest is
how children perform on each subtype. Thus, we report results by
subtype, using separate logistic mixed effects models throughout. These
models included a fixed effect of polarity (negative vs positive) when
comparing the two trial types to each other, or an intercept term, when
comparing performance to chance. All of the models included random
intercepts by subjects and items, and random slopes by the effect of
negation, where this was a fixed effect.

The overall pattern of results for each of the individual subtypes of
contrast trial was the same. On N vs. N+ 1 trials (where N was the
child’s knower-level), each group was more likely to choose the animal

with the larger quantity (N+ 1 fish) when asked for the animal who has
N+1 than when asked for the animal who does not have N+1 (Subset-
knowers: 2= 35.09, p < 0.001; CP-knowers: 2= 32.17,
p < 0.001). Similarly, on N vs. N+2 trials, all subject groups were
more likely to choose the animal with the larger quantity (N+2 fish)
when asked for the animal who has N+2 than the animal who does not
have N+2 (Subset-knowers: 2= 17.19, p < 0.001; CP-knowers:
2= 23.21, p < 0.001).

Split Trials. These trials provided a critical test of whether children
were sensitive to the entailment relations between numbers. As with the
Contrast trials, we again coded whether subjects chose the animal with
the larger quantity of fish (Fig. 5). Recall that the first measure of un-
derstanding entailment is systematically choosing larger quantities in
response to positive prompts. We analyzed the results using separate
regressions for each subtype of Split trial and each group, to check
whether children’s performance on positive prompts differed from
chance. When asked who has a known number, N, all groups chose the
larger quantity more often than chance (Subset-knowers: Z=4.24,
p < 0.001; CP-knowers: Z=2.86, p=0.004; adults: Z=3.46,
p < 0.001). More strikingly, Subset-knowers did the same thing on
both of the other subtypes, when asked who has N+1 (Subset-knowers:
Z=4.52, p < 0.001; CP-knowers: Z=1.07, p=0.286; adults:
Z=2.48, p=0.013) and who has N+2 (Subset-knowers: Z=4.57,
p < 0.001; CP-knowers: Z=2.04, p=0.042; adults: Z=3.07,

Fig. 5. Percentage of participants choosing the larger option in each of the
three types of split trials (A–C): A (N−1 vs. N+ 1), B (N vs. N+ 2), and C
(N+1 vs N+3). For Subset-knowers, N is the largest known number. For CP-
knowers and adults, N= 5. Error bars show 1 standard error from the mean.

Fig. 4. Percentage of participants choosing the larger option in each of the two
types of contrast trials: A (N vs. N+ 1) and B (N vs. N+2). For subset-knowers,
N is the largest known number. For CP-knowers and adults, N= 5. Error bars
show 1 standard error from the mean.

10 Note that CP-knowers’ performance is generally less robust than subset-
knowers’. We see two possible reasons: (1) there are fewer CP-knowers, and (2)
they saw larger, harder to discriminate sets and were queried on higher, non-
subitizable numbers (e.g. a control trial showing N v N + 1 and querying N for
a CP-knower translates into a display of 5 vs. 6, querying five).
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p=0.002), suggesting that their understanding of entailment may ex-
tend to numbers in their count list beyond those for which they have
acquired stable exact meanings.

Children also understood how negation reversed the entailment
pattern – both groups of children were less likely to choose the larger
quantity when asked who does not have a number than asked who has
it (all ps < 0.05), showing that they differentiated the negative and
affirmative requests. Since children picked the larger quantities for af-
firmative prompts, a more stringent test is not merely whether they
differentiated negatives from affirmatives, but whether they chose the
larger set less than 50% of the time when asked who does not have a
number. As in the case of entailment understanding in positive contexts,
children’s understanding of entailment under negation extended be-
yond known numbers. Children were less likely than chance to choose
the larger quantity when asked for the animal who does not have N on
N−1 vs. N+1 trials (Subset-knowers: Z=−2.67, p=0.008; CP-
knowers: Z=−2.31, p=0.021; adults: Z=−2.27, p=0.023), when
asked who does not have N+1 on N vs. N+2 trials (Subset-knowers:
Z=−4.89, p < 0.001; CP-knowers: Z=−2.25, p=0.025; adults:
Z=−2.95, p=0.003), and even when asked who does not have N+2
on N+1 vs. N+ 3 trials, in which all quantities were unknown
(Subset-knowers: Z=−3.99, p < 0.001; CP-knowers: Z=−1.93,
p=0.054; adults: Z=−2.11, p=0.034). For example, 2-knowers
who were presented with a set of three and a set of five were more
likely to choose the set of five when asked, Who has four fish?, but more
likely to choose three when asked, Who does not have four fish?

3.3. Discussion

Both CP- and subset-knowers demonstrated a clear understanding
that having some number of items is satisfied by larger quantities than
what that number refers to, while not having that number is satisfied by
smaller ones. In fact, we found that subset-knowers respected these
entailment relations even when all quantities involved were unknown,
in both positive and negative contexts, a finding of particular sig-
nificance to explaining how children could learn unknown number
words. These findings suggest that knowledge of numerical entailment
precedes children’s acquisition of the precise cardinal meanings of
number words. The fact that children selectively chose larger quantities
for N, but smaller quantities for not N, further suggests that their success
in positive contexts cannot be due to simply relying on a default
strategy to choose the bigger quantity.

While there are alterative explanations for children’s performance
on some kinds of trials, none of these extend to all trials. Given that
children’s performance looks the same across the board, the simplest
explanation is that their judgments across trials reflects one common
capacity. For example, on N+1 vs. N+3 split trials – when all num-
bers are unknown, children might in principle just associate numbers
higher on the count list with larger quantities (the “later-greater”
principle; see Carey, 2009), choosing the larger set for N+2 because it
is a higher number than they know. However, children do not typically
acquire the later-greater principle until well after they are CP-knowers
(Le Corre, 2014). Moreover, relying on the later-greater principle could
not explain children’s performance on N−1 vs. N+1 trials, when
queried on N. Later-greater is a principle about the meanings of un-
known numbers; it does not apply here, because children know the exact
meaning of N (and therefore that it does not exactly match the set of
N+1), and yet choose N+1 nevertheless. A different explanation is
possible for children’s performance on the split trials where they saw N
vs. N+ 2 and were queried on N+1: it is possible to choose the larger
set on the basis of contrast rather than entailment. That is, if children

know neither N+1 nor N+2, they may work through the same
contrastive logic when asked for N+1 as if they had been asked for
N+2, thinking that because N+1 does not refer to the set of N (for
which they know the corresponding number), it must label the other,
larger set. While contrast and entailment coincidentally lead to the
same choice in this case, the same is not true in the other two subtypes
of split trials. When children see N+1 and N+3 and are queried on
N+2, contrast does not help because they know none of the numbers
involved. When children see N−1 and N+1 and are queried on N,
they know the exact meaning of N and therefore know that it contrasts
with both (the also known) N−1 set, and the N+1 set (even if they do
not know which word applies to that one). While different alternative
strategies might explain performance on some kinds of trials but not
others, we found that on all three subtypes of split trials, subset-knowers
consistently chose the larger set following affirmative prompts and the
smaller set following negative prompts. The simplest explanation is that
they applied the same understanding of numerical entailment, and of its
reversal under negation, across all of these trials.

One surprising feature of these data is children’s performance on the
N+1 vs. N+ 2 control trials. These trials were meant to replicate
Wynn (1992), who found that subset-knowers were at chance when
presented with N+1 vs. N+ 2 and were prompted to point to either of
the corresponding numbers. Wynn grouped both N+1 and N+2
prompts together and found chance performance. In contrast, we
looked at each prompt separately, and found that while subset-knowers
pointed randomly when asked who has N+1, they tended to choose
N+2 when asked who has N+2. While one somewhat unlikely ex-
planation of this finding is that N-knowers know more about N+2 than
N+1, another possibility is that two factors play a role in children’s
judgments. First, as we found on both contrast and split trials, children
tend to choose larger quantities when asked who has x when they do not
know exactly what quantity x picks out. This factor alone explains
children’s performance when asked about N+2. Second, some subset-
knowers may have begun to map N+1 to the cardinality it denotes,
even if this knowledge is not so robust that they consistently give ex-
actly and only that amount when asked to give N+1 (see Barner &
Bachrach, 2010; Gunderson, Spaepen, & Levine, 2015). If these children
tend to point to N+1 when asked who has N+1, while other children
continue with their default behavior and choose N+2, the average of
the two responses may look like random responding. While this is
speculative, it converges with recent evidence that subset-knowers have
some partial knowledge of numbers above their knower-level (Barner &
Bachrach, 2010; Gunderson et al., 2015; Wagner, Chu, & Barner, 2018),
and points to the importance of characterizing the nature of this
knowledge.

4. General discussion

In two experiments we found evidence that subset-knowers – i.e.,
children who have not yet learned the exact meanings of numbers past
three or four – use knowledge of abstract properties of number to restrict
inferences about the meanings of specific unknown number words (i.e.,
number words for which they do not yet have a reliable, exact,
meaning). Experiment 1 suggested that subset-knowers use contrast and
the structure of the count list to distinguish their interpretation of un-
known numbers from that of existential quantifiers like some or a,
contrary to Carey (2009), Clark (1970), and Clark and Nikitina (2009).
When asked to not give some objects or an object, subset knowers pre-
ferred to give nothing, whereas when asked to not give a number beyond
their knower-level, these same children gave some positive amount.
Children assumed that a request to not give N can be satisfied by giving

R. Feiman et al. Cognition 183 (2019) 192–207

200



some other number (e.g., that a request to not give five can be satisfied
by giving one, two, three, or four), consistent with their knowing that
numbers belong to a set of contrasting lexical alternatives (Wynn,
1992). This was true even for non- and 1-knowers, when they were
asked not to give higher numbers that they did not know the exact
meaning of, like two or five; they provided some positive amount when
asked to not give a number, but gave nothing when asked not to give a
or some. Thus, children used their knowledge that number words con-
trast with each other to differentiate unknown numbers from existential
quantifiers.

Further exploring how knowledge of the number system constrains
children’s inferences about individual number meanings, Experiment 2
found that subset knowers assume that expressions containing numbers
beyond their knower-level fall on an entailment scale, and that this
scale reverses under negation. For example, when 2-knowers were
presented with a comparison of 1 vs. 3 fish and asked who has two fish
they preferred the larger set, whereas they preferred the smaller set
when asked who does not have two fish. In fact, subset knowers exhibited
this behavior even when all numbers were outside their Wynn knower-
level: They judged that a request for N+2 was satisfied by N+3,
whereas a request for not N+2 was satisfied by N+1. This suggests
that, when told that a set contains N, children assumed that whatever N
means, it can be satisfied by an amount of N or more, but not by an
amount of less than N, and therefore that choosing a larger quantity
over a smaller one guarantees a correct response. In sum, these results
provide strong evidence that children draw on their knowledge of both
the count list and an abstract understanding that larger sets contain
smaller sets to make logical inferences when interpreting number
words, even before their adult-like exact meanings are fully known.

Before we explore the significance of these findings for the acqui-
sition of number words in particular and abstract concepts more gen-
erally, we first address alternative explanations for each of the two
experiments.

4.1. Alternative explanations

In Experiment 1, children were asked not to give some number N of,
e.g., bananas. In response, they gave varying amounts of bananas at all
knower-levels (see Fig. 1). Our analysis of this behavior is that it not
only reflects knowledge of contrast, but also that children know that
numerals contrast in a particular way, by denoting alternative cardinal
values, such that a request to not give N is interpreted as a request to
give some other number. However, a possible deflationary interpreta-
tion of this result is that giving some positive number of bananas is just
children’s default behavior in the context of a giving task in which
bananas are mentioned. On this account, it is not necessary to invoke
knowledge of contrast or alternatives.

Several results speak against this explanation. First, children did not
just give bananas any time they were mentioned, as evidenced by the
trials on which some and a were tested. Children at every knower-level
gave zero bananas more than half the time when asked either to not give
a or not give some bananas, interpreting these as requests to give none
(see Fig. 1). A more qualified deflationary account might argue that
children are capable of giving zero in response to requests for negative
existentials like a and some, which they understand, but revert to their
default behavior when the request is confusing. However, this account
would predict that children might behave differently for numbers
within their knower-level limit compared to unknown numbers. Against
this, however, we found that children’s reluctance to give zero in re-
sponse to numbers did not differ between numbers above and within
their knower level. Children simply differentiated existentials from all
numbers, at all knower-levels. They interpreted requests for not N to

mean that they should give some quantity, rather than nothing, but
only when N was a number word.

In Experiment 2, children chose pictures with more objects in re-
sponse to affirmative prompts than they did in response to negative
prompts. While we argue that this is because of their understanding of
entailment, and of how entailment reverses under negation, a possible
deflationary account is that children used some form of heuristic when
performing our task, and interpreted negation to mean less than or small
amount. While this idea can describe our data from Experiment 2, it
nevertheless faces several problems. First, in most cases negation is not
associated with small amounts. For example, a statement like, “That is
not a cat”, is neutral with respect to quantity, and instead makes re-
ference to a property that is true or false of an object. It does not mean
“less than a cat” or “a small amount of cat”, but instead that the referent
in question is something other than a cat. For adults, negation generally
only identifies smaller numbers when used in combination with number
words, precisely because of how it reverses entailment along the
number scale. These facts mean that, if children do rely on a heuristic
that falls short of full-fledged entailment, such a heuristic would need to
have almost exactly the same content as entailment and be derived from
exactly the same evidence – i.e., from how adults use number words,
how they use negation, and how these two compose semantically.

Further, data from Experiment 1 provide empirical evidence against
this possibility, since children did not exhibit a preference to give
especially small numbers in response to negative requests. When told
not to give N objects, children did not asymmetrically give numbers
greater or smaller than N (see Appendix A). For example, in response to
a request to give everything, but not two bananas children were as likely to
give one banana as to give all five. It is interesting that entailment re-
lations did not seem to play a role in children’s behavior in Experiment
1. One likely reason for this finding is that sentences in Experiment 1
were imperatives (i.e., requests), rather than statements about the
world. Although entailment relations hold between descriptions of
states of the world, previous studies have reported that imperatives fail
to generate scalar implicatures, a result which is also consistent with a
relative insensitivity to asymmetric entailment relations (see Singh,
Wexler, Astle-Rahim, Kamawar, & Fox, 2016, for discussion). At the
very least, Experiment 2 shows that children do not compute only
simple exclusion inferences when interpreting negated numbers – i.e.,
they do not rely simply on contrast or mutual exclusivity, which each
permit symmetrical negation of both higher and lower alternatives.
Instead, their inferences reflect asymmetric negation of alternatives,
with the direction of the asymmetry changing under negation, con-
sistent with knowledge of entailment.

4.2. Negation and entailment in childhood

The finding that children understand how negation reverses the
entailment relations of numbers in their count list supports two key
conclusions. First, children understand how negation affects entailment
at most only six months after they understand negation words as logical
at all. Second, children’s understanding that larger sets contains smaller
sets, and how this constrains the meanings of individual number words,
provides a robust conceptual scaffold that children could use to learn
the meanings of number words. We address each of these ideas in turn.

While previous studies have found that children as young as 2 years
of age comprehend the logical meaning of words like no, not, and didn’t
(Austin et al., 2014; Feiman et al., 2017; Reuter et al., 2018), these
studies have focused on children’s comprehension of negation in the
service of exclusion inferences between one of two options. For ex-
ample, given two options (e.g., a bucket and a truck), and told that a
hidden ball is not in one of them, 2-year-olds search in the other. But
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being able to exclude a possibility does not necessarily mean being able
to exclude its implicit logical consequences. Our study provides the first
evidence that young children reason from an utterance through to its
unstated entailments, a deductively valid and therefore especially
powerful example of how children can gain new knowledge without
new experience, or “learning by thinking” (Lombrozo, 2016; Walker,
2015).

While our work shows that very young children readily interpret
negation in the context of a scale, several open questions remain: Do
children integrate negation and entailment relations just as readily in
scales other than number? Is this integration learned separately and
perhaps piecemeal for different scales, or simply comes for free by
virtue of both comprehending negation and representing a scale? Do
they understand other triggers to reversing entailment, such as condi-
tional statements? For example, do they understand that the statement,
if you have two cookies, you should share them does not entail that you
should share if you only have one cookie? Do children further under-
stand multiple embedded reversals of entailment within a sentence, the
way that adults intuitively understand that, no aardvark without a keen
sense of smell can find food entails that, no aardvark without a sense of
smell can find food (see Icard & Moss, 2014)? What we know from the
present study is that children don’t require a complete mastery of the
semantics of the scale – i.e., the exact meaning of each member – to
understand either the entailment relations between members, or how
these relations reverse under negation. The tasks that we have devel-
oped here provide a method for exploring this issue in further studies,
by testing children at the earliest moments they begin to comprehend
negation.

4.3. Number word learning as Quinian bootstrapping

The results of this study suggest that children’s early hypotheses
about the meanings of number words – both known and unknown –
may be informed by their membership in the count list and by knowl-
edge of numerical entailment. These results are important because they
suggest that these hypotheses may be informed by their understanding
of the logical relations between numbers, contrary to most previous
accounts. Most recent studies of number word learning have focused on
counting and concluded that subset knowers not only do not under-
stand counting (Condry & Spelke, 2008; Le Corre & Carey, 2007; Wynn,
1990, 1992), but also that they do not even understand that counting is
relevant to determining cardinality in many contexts. For example,
although even some non-knowers can recite a partial count list, subset-
knowers do not even try to count when asked to give precise numbers
(Le Corre & Carey, 2007). Other studies have gone further, to argue that
the logic of counting is probably learned some months (or maybe years)
after children can reliably use the counting procedure to give sets,
suggesting that the logic of counting may be derived following years of
using a relatively blind procedure (Davidson et al., 2012; Wagner,
Kimura, Cheung, & Barner, 2015; Cheung et al., 2017).

While it may take years for children to acquire the full logic of
counting, our study suggests that they may begin learning it very early
on, such that this knowledge could inform the acquisition process, in
keeping with Quinian bootstrapping. How might knowledge of entail-
ment facilitate number word learning? In a previous study, Barner and
Bachrach (2010) proposed that early number words may receive exact
interpretations via a form of logical inference that depends on knowl-
edge of entailment – i.e., scalar implicature. Specifically, they proposed
that children may initially assign the number one a non-exact meaning
equivalent to a, such that both a dog and one dog denote singleton dog
sets. At this point, though both a and one denote precise quantities –
i.e., singleton sets – their meanings are not strengthened via contrast to
other, stronger, expressions. Thus, for example, children initially accept
both a banana and one banana for sets larger than one (Barner et al.,
2009). However, once children learn the core meaning of two (i.e.,
doubleton sets), one is strengthened by appeal to two to mean A

SINGLETON, BUT NOT A DOUBLETON, OR MORE.11 At this point, children are
classified by tasks like Give-a-Number as 1-knowers, since they treat one
as exact, and now deny that there is one banana in a container if there
are two or more, despite continuing to agree that there is a banana
(Barner et al., 2009). More generally, on this hypothesis, children’s first
number word meanings are equivalent to singular, dual, and trial (see
also Almoammer et al., 2013; Marušič, Žaucer, Plesničar, Sullivan, &
Barner, 2016), and are strengthened to mean EXACTLY ONE, EXACTLY TWO

and EXACTLY THREE via contrast with stronger scale mates – i.e., by a form
of scalar implicature. Critically, this type of inference relies on an ap-
peal to entailment: An expression like, There are two bananas is
strengthened to, There are exactly two bananas by ruling out other
statements that a speaker might have uttered (e.g., There are three ba-
nanas), so long as they are not weaker than the original statement (i.e.,
are not logically entailed by them). Since, There are three bananas lo-
gically entails There are two bananas, the former utterance is negated as
a possible meaning when interpreting the latter. More informally, the
child reasons that if the speaker had believed that there really are three
bananas, then they should have said so, since that claim is strictly
stronger than the alternative containing two, despite both being lit-
erally true.

Our study provides evidence that is compatible with this conclusion.
In Experiment 2, we find that children are able to make entailment
inferences for number words before they acquire their exact meanings
(before they succeed with N on the Give-N task), a capacity which could
be used to derive exactness. By reasoning that a set described as N
bananas contains at most N bananas (since otherwise the speaker would
have used its successor or a higher number), and because N bananas
must contain at least N, children could derive an exact meaning – that N
bananas is at least N, and at most N bananas. Running the mirror image
of this logic for the meaning of not N bananas might further cement that
N means exactly N.

While we have argued that children are able to understand the
entailments of expressions containing number words, it is an open
question whether they also understand entailment in other domains,
and whether this might help them acquire concepts in those domains.
Scales abound in our conceptual repertoire and in how it is expressed in
language (Horn, 1972). For example, hot and warm are scale-mates, as
are some and all. Does learning that a pair of words falls on a scale,
together with the direction of that scale’s entailment, help children
figure out the meaning of one word if they know the meaning of the
other? The “Point to Not-X” task we developed in Experiment 2 may
provide a tool to test children’s understanding of entailment on other
scales, as well. Coupled with separate tests of whether children have
knowledge of each individual concept represented by a scale, this fra-
mework may allow further tests of whether understanding entailment
precedes the acquisition of individual concepts in domains other than
number.

5. Conclusion

This study suggests that when children acquire number words, they
use the structure of the count list to differentiate these words from other
quantity expressions like a and some. They also use the mapping be-
tween number words and the logical structure of cardinalities to make
inferences regarding the entailments of number words, even before they

11 As noted by Barner and Bachrach, Wynn’s Give-a-Number task is con-
servative and presupposes an exact semantics for number words. According to
Wynn and subsequent studies that have used her task, a child is an N-knower if
they give N two out of three times when asked for N, and if on two out of three
times that they give N it is in response to requests for N. Thus, a child can use N
+ 1 accurately 65% of the time – or even 100% of the time – might still be
classified as an N-knower if for N + 2 they responded randomly and sometimes
gave N + 1.
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learn their exact meanings. By learning that an expression like having
two is compatible with having three but not with having one, and that
not having two is compatible with having one but not with having three,
children may also acquire the knowledge necessary for inferring that
two denotes more than one, but less than three – i.e., exactly two. On
this account, children may acquire number word meanings using a form
of Quinian bootstrapping, using the abstract relations that hold be-
tween concepts to constrain and enrich hypotheses about the concepts
themselves. The present study provides the first evidence that children
understand a fundamental abstract relation that underlies all of the
natural numbers before they know the meanings of these numbers or
the logic of counting, and thus that children may bootstrap exact lexical
meanings from knowledge of the structures in which they are used.
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Appendix A

See Figs. A1 and A2.

Fig. A1. Proportion of trials on which participants gave 0 of the target items in response to each type of request, broken down by knower-level. Error bars show±1
standard error, averaged by participant. The two 4-knowers in the sample are excluded from this breakdown.
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Appendix B

See Figs. B1 and B2.

Fig. B1. Percentage of participants choosing the larger option in each of the subtypes of contrast trials (A: N vs. N+1, B: N vs. N+2) and (C) the unknown number
control trials in Experiment 2, broken down by knower level. For subset-knowers, N is the largest known number. For CP-knowers and adults, N= 5.
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